3.532 \(\int \frac {a+b \sin ^{-1}(c x)}{(d+c d x)^{3/2} (f-c f x)^{3/2}} \, dx\)

Optimal. Leaf size=96 \[ \frac {x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{(c d x+d)^{3/2} (f-c f x)^{3/2}}+\frac {b \left (1-c^2 x^2\right )^{3/2} \log \left (1-c^2 x^2\right )}{2 c (c d x+d)^{3/2} (f-c f x)^{3/2}} \]

[Out]

x*(-c^2*x^2+1)*(a+b*arcsin(c*x))/(c*d*x+d)^(3/2)/(-c*f*x+f)^(3/2)+1/2*b*(-c^2*x^2+1)^(3/2)*ln(-c^2*x^2+1)/c/(c
*d*x+d)^(3/2)/(-c*f*x+f)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {4673, 4651, 260} \[ \frac {x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{(c d x+d)^{3/2} (f-c f x)^{3/2}}+\frac {b \left (1-c^2 x^2\right )^{3/2} \log \left (1-c^2 x^2\right )}{2 c (c d x+d)^{3/2} (f-c f x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])/((d + c*d*x)^(3/2)*(f - c*f*x)^(3/2)),x]

[Out]

(x*(1 - c^2*x^2)*(a + b*ArcSin[c*x]))/((d + c*d*x)^(3/2)*(f - c*f*x)^(3/2)) + (b*(1 - c^2*x^2)^(3/2)*Log[1 - c
^2*x^2])/(2*c*(d + c*d*x)^(3/2)*(f - c*f*x)^(3/2))

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 4651

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(x*(a + b*ArcSin[c
*x])^n)/(d*Sqrt[d + e*x^2]), x] - Dist[(b*c*n)/Sqrt[d], Int[(x*(a + b*ArcSin[c*x])^(n - 1))/(d + e*x^2), x], x
] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[d, 0]

Rule 4673

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> D
ist[((d + e*x)^q*(f + g*x)^q)/(1 - c^2*x^2)^q, Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q]
 && GeQ[p - q, 0]

Rubi steps

\begin {align*} \int \frac {a+b \sin ^{-1}(c x)}{(d+c d x)^{3/2} (f-c f x)^{3/2}} \, dx &=\frac {\left (1-c^2 x^2\right )^{3/2} \int \frac {a+b \sin ^{-1}(c x)}{\left (1-c^2 x^2\right )^{3/2}} \, dx}{(d+c d x)^{3/2} (f-c f x)^{3/2}}\\ &=\frac {x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{(d+c d x)^{3/2} (f-c f x)^{3/2}}-\frac {\left (b c \left (1-c^2 x^2\right )^{3/2}\right ) \int \frac {x}{1-c^2 x^2} \, dx}{(d+c d x)^{3/2} (f-c f x)^{3/2}}\\ &=\frac {x \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{(d+c d x)^{3/2} (f-c f x)^{3/2}}+\frac {b \left (1-c^2 x^2\right )^{3/2} \log \left (1-c^2 x^2\right )}{2 c (d+c d x)^{3/2} (f-c f x)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.51, size = 105, normalized size = 1.09 \[ \frac {\sqrt {c d x+d} \left (2 a c x+b \sqrt {1-c^2 x^2} \log (-f (c x+1))+b \sqrt {1-c^2 x^2} \log (f-c f x)+2 b c x \sin ^{-1}(c x)\right )}{2 c d^2 f (c x+1) \sqrt {f-c f x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSin[c*x])/((d + c*d*x)^(3/2)*(f - c*f*x)^(3/2)),x]

[Out]

(Sqrt[d + c*d*x]*(2*a*c*x + 2*b*c*x*ArcSin[c*x] + b*Sqrt[1 - c^2*x^2]*Log[-(f*(1 + c*x))] + b*Sqrt[1 - c^2*x^2
]*Log[f - c*f*x]))/(2*c*d^2*f*(1 + c*x)*Sqrt[f - c*f*x])

________________________________________________________________________________________

fricas [F]  time = 0.54, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c d x + d} \sqrt {-c f x + f} {\left (b \arcsin \left (c x\right ) + a\right )}}{c^{4} d^{2} f^{2} x^{4} - 2 \, c^{2} d^{2} f^{2} x^{2} + d^{2} f^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/(c*d*x+d)^(3/2)/(-c*f*x+f)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*d*x + d)*sqrt(-c*f*x + f)*(b*arcsin(c*x) + a)/(c^4*d^2*f^2*x^4 - 2*c^2*d^2*f^2*x^2 + d^2*f^2),
 x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \arcsin \left (c x\right ) + a}{{\left (c d x + d\right )}^{\frac {3}{2}} {\left (-c f x + f\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/(c*d*x+d)^(3/2)/(-c*f*x+f)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)/((c*d*x + d)^(3/2)*(-c*f*x + f)^(3/2)), x)

________________________________________________________________________________________

maple [F]  time = 0.33, size = 0, normalized size = 0.00 \[ \int \frac {a +b \arcsin \left (c x \right )}{\left (c d x +d \right )^{\frac {3}{2}} \left (-c f x +f \right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))/(c*d*x+d)^(3/2)/(-c*f*x+f)^(3/2),x)

[Out]

int((a+b*arcsin(c*x))/(c*d*x+d)^(3/2)/(-c*f*x+f)^(3/2),x)

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 86, normalized size = 0.90 \[ \frac {b x \arcsin \left (c x\right )}{\sqrt {-c^{2} d f x^{2} + d f} d f} + \frac {a x}{\sqrt {-c^{2} d f x^{2} + d f} d f} - \frac {b \sqrt {\frac {1}{d f}} \log \left (x^{2} - \frac {1}{c^{2}}\right )}{2 \, c d f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/(c*d*x+d)^(3/2)/(-c*f*x+f)^(3/2),x, algorithm="maxima")

[Out]

b*x*arcsin(c*x)/(sqrt(-c^2*d*f*x^2 + d*f)*d*f) + a*x/(sqrt(-c^2*d*f*x^2 + d*f)*d*f) - 1/2*b*sqrt(1/(d*f))*log(
x^2 - 1/c^2)/(c*d*f)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{{\left (d+c\,d\,x\right )}^{3/2}\,{\left (f-c\,f\,x\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))/((d + c*d*x)^(3/2)*(f - c*f*x)^(3/2)),x)

[Out]

int((a + b*asin(c*x))/((d + c*d*x)^(3/2)*(f - c*f*x)^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))/(c*d*x+d)**(3/2)/(-c*f*x+f)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________